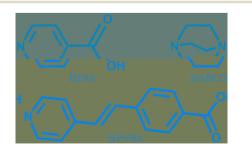
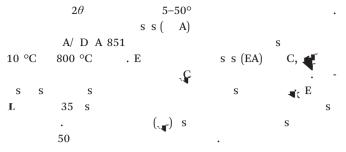


Check for updates


Paper



Experimental

Materials and measurements

A s s S \mathbf{S} S \mathbf{S} S (**4** BA) 4-(2-(4-)) S S s s.³⁶ D) D A 2500 ($(\lambda = 1.54178 \text{ A})$ C - α ٩Ċ

Gas adsorption analysis

S S S 2 \mathbf{S} A A s 2020 (A A -2020) s 77 C 2 S 273 298 \mathbf{S} s s s S S 99.999% B S S s 2 S S S s, S S 5 S S SS. s 2 SS s s 8 333 .

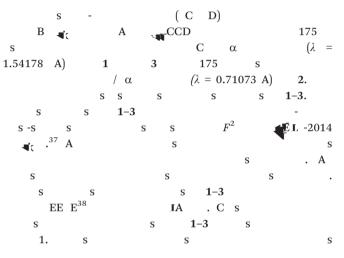
Synthesis of Cu₂(H₂O)(Cu₄I₄)(INA)₄·solvent (1)

, C C 2.2 , 40 20 (0.23)), a î), A (0.32 4,4'-C . (0.63 , 120 , 40) , 26 (0.10)) (DEF, 2 D A (2 L) N,N'-L) S S S 1 100 °C 4 s. A - Č S 1 s S s S S S S s D A : ca. , v/ ⁻¹): 3358(), 2940(), С 🔒 🕌 (В 14% (S 1598(), 1557(), 1501(s), 1381(), 1265(s), 1179(s), 1052(),

1013(), 846(s), 770(), 684(), 588().

Synthesis of Cu₂(H₂O)₂(Cu₄I₄)₂(INA)₄(DABCO)₂·2DMA (2)

20 L C (0.42 DABC (0.18	$, 80 \\ , 20$, C C ₂),	2·2 (0.23 (0.32 , 5	, 40), 40), LDA
s 1	,		S S	4 (
100 °C 4	s. A			,
S	S S	2 s	S	s -
	S	S	S	,
S			. : ca	
C 🔶 C, 🖠	2		ss(%) 0.74, € 2.16,	2: C
20.53, 2.42,	5.44;	: C 2	0.74, 🛃 2.16,	5.49. 🚬 (B
, v/ -1	: 3414(),	2940(), 2885(s), 160	8(), 1547(s),
1497(), 1391 796(s), 765()		-	(), 1052(s), 10	013(), 861(s),


Synthesis of [(Cu₂)₂(PVBA)₈(Cu₄I₄)]·DMF (3)

20			, C ң (0.26	, 50), 🞻 BA
(0.14	, 30)	4	LD F	s

CrystEngComm

100 °C 1. S S -**T**C , 4 s. A , I S S 3 s S s -S S S : *ca.* 18% (s D F S • C ... C, 🐗 ss (%) 3: С 47.91, 4.37; : С 47.07, **4**2.86, 4.29. 🖕 (В , v/ ⁻¹): 2920(), 2082(), 1663(), 1593(), 1537(), 1492(), 1370(), 1245(s), 1209(s), 1088(), 1013(), 942(), 831(), 800(), 760(), 669(), 538().

Single crystal structure analyses

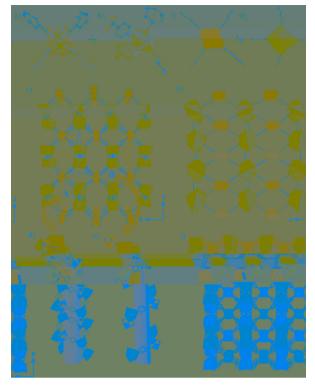
CCDC S s S 1910020 (1), 1910018 (2) 1910019 (3).

Results and discussion

Structural description of 1

C D	S S	1	S			
R3c s		, s s		SS		
	C^+	s (C 1, C 2		+ (C 3)	,	- -
s,		A	S			
			. 1†). As	S	F .	1,
C^{2+}	S S	-				
	S	С –	_A	S		-
S			•			
,		-	C^{2+}	S		
SS	-	$C_2(C_2)$	4 S 1	via 📕 A		
F	,	м ^а		•	-	
C 4.4	в (F.	1). C	C -	C ·	-	•••
s			3-2.79, 1.	92-2.10,	1.9	95-
2.03 A,				S		
S	39 ₹ (,	C 2(C 2)4	S		
S	S	в,	C 4.	- S		
	S				S	
	4-	Bs		3D		
s (F.1).	SS 1	s S			s
		SS SS		1D		
S	s		4×2.7	2	С	s
(F . 1).	S	S	S S		

Table 1 Crystal data and structure refinement for 1-3


	1	2	3	
E	C_{24} $C_{0}C_{6+4-4-10}$	C ₃₆ , 4C 10.8 8 10	C ₁₁₂ C 8.4 8 16	
F	1413.34	2399.39	2809.84	
Csss				
	R3c	Стса	C2/c	
a (A)	49.26 (9)	29.00 (3)	63.59 (2)	
b (A)	49.26 (9)	17.61 (15)	19.66 (7)	
c (A)	35.34 (14)	16.93 (15)	41.56 (14)	
$V(A^3)$	74 301 (4)	8654.1 (13)	39 490 (2)	
Ζ	18	4	8	
F(000)	11 842	5140	11 038	
θ /°	2.706 50.513	1.810 25.041	1.829 66.895	
L s	$-49 \leq h \leq 46$	$-28 \leq h \leq 34$	$-72 \leq h \leq 75$	
	$-49 \leq k \leq 48$	$-16 \leq k \leq 20$	$-22 \leq k \leq 21$	
	$-33 \leq l \leq 33$	$-14 \leq l \leq 20$	$-49 \leq l \leq 38$	
ρ (⁻³)	0.569	2.110	0.945	
()	175(2)	175(2)	175(2)	
μ (⁻¹)	6.820	5.295	6.137	
	48 890	14 839	92 426	
۲. ·	8589	3879	32 917	
S	217	166	1333	
R	0.0977	0.0239	0.0473	
$\mathbf{F} = F^2$	1.003	1.050	1.065	
F R s $(I = 2\sigma(I))$	$R_1 = 0.0684,$	$R_1 = 0.0315,$	$R_1 = 0.0894,$	
	$R_2 = 0.1879$	$R_2 = 0.0896$	$R_2 = 0.3184$	
R s()	$R_1 = 0.1111,$	$R_1 = 0.0384,$	$R_1 = 0.0973,$	
	$R_2 = 0.2071$	$R_2 = 0.0926$	$R_2 = 0.3334$	

 $R_{1} = \sum ||F| - |F|| / \sum |F|. \quad R_{2} = \sum (F^{2} - F^{2})^{2} / \sum (F^{2} - F^{2})^{2} / \sum (F^{2})^{2} |^{1/2}; \quad = 1 / \sigma^{2} (F^{2}) + (xP)^{2} + yP], P = (F^{2} + 2F^{2}) / 3, 0.054600, y = 57.403599 \quad 2; x = 40.280000, y = 0 \quad 3.$

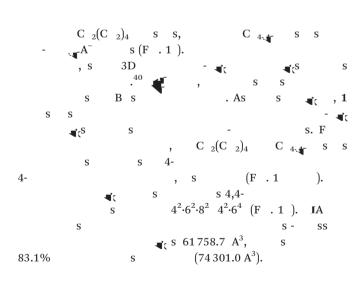

Paper

Fig. 1 Crystal structure of **1**: a and b) the paddle-wheel $Cu_2(CO_2)_4$ and cubane-like Cu_4I_4 clusters. c) View of the 3D honeycomb-like framework structure. d) View of the 1D hexagonal channel with the size of 2.4×2.7 nm². e) The connection mode between $Cu_2(CO_2)_4$ and Cu_4I_4 clusters. f and g) The topological representation of $Cu_2(CO_2)_4$ and Cu_4I_4 clusters. h) The topological representation of 3D honeycomb-like framework. i) View of 1D hexagonal channels viewed along the *b* axis.



Fig. 2 Crystal structure of **2**: a and b) the paddle-wheel $Cu_2(CO_2)_4$ and cubane-like Cu_4I_4 clusters. c) View of the 3D framework along the *c* axis. d and e) View of tubular channels. f and g) The topological representation of $Cu_2(CO_2)_4$ and Cu_4I_4 clusters. h) The topology of the 3D framework. i) View of the 2-fold interpenetrated framework structure in **2**.

Structural description of 2

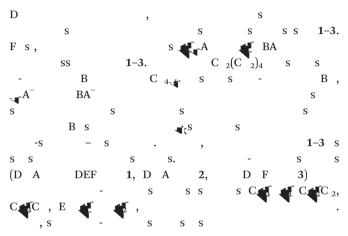
С D SS 2 S Cmca s . As s F . 2,† \mathbf{S} s (C 1, C 2), С S S S $C^{2+}(C_{3})$ s, DABC \mathbf{S} S B s 2 \mathbf{S} s

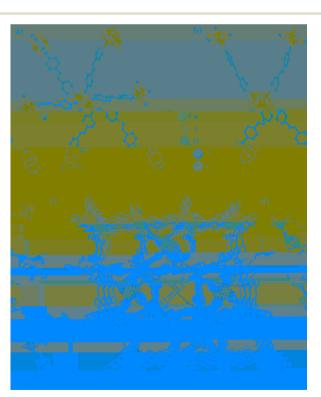
CrystEngComm

Structural description of 3

C D s 3 S C2/c s . As s \mathbf{F} 4,† . C $^+$ s (C 1, C 2, C 3, C 4), s S 2+ s (C 5, C 6, C 7, C 8), С S . I B s BA^{-} s. S 3 S 1 2. S C 2(C 2)4 S S 3. S 1 S $C_{2}(C_{2})_{4}$ 2. S S S 3 S ۹ř S s BA^{-} s S 1 2 (F . 3). As S \mathbf{S} $C_{2}(C_{2})_{4}$ 6-S C 4.4 $C_{2}(C_{2})_{4}$ S \mathbf{S} \mathbf{C} S \mathbf{S} s. 4.4 S S S 2 (F . 3). s S 1 S 3 $C_{2}(C_{2})_{4}$ \mathbf{S} S S S S - SS S ٩¢ s (F . BA5 †). SS SS ۰ic. 2 b S 1.5×1.8 S S (F BA . 3). F s s S \mathbf{C} s -₹ 4.4 s (F 5 †). BA^{-} - SS S . s/ S S \mathbf{S} S SBA s 36

I I


3 S-SS.


Syntheses

6-

4-

6†).

Fig. 3 Crystal structure of **3**: a) view of the coordination environment of the $Cu_2(CO_2)_4$ cluster. b) View of the coordination environment of the Cu_4I_4 cluster. c) View of the 3D framework of **3** along the *b* axis. d) View of the rhombic channels.

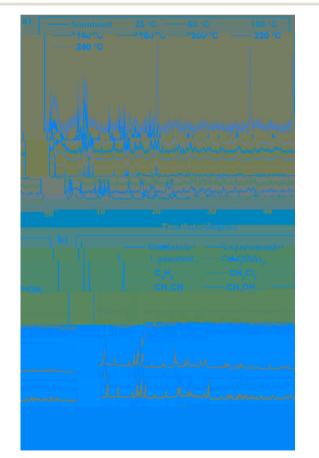
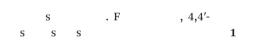



Fig. 4 The PXRD patterns of 2 under a) thermal conditions and b) immersion in a variety of common organic solvents.

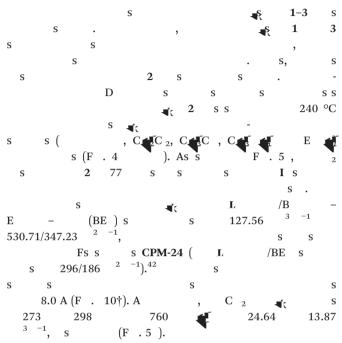


Fig. 5 a) The N_2 and b) CO_2 adsorption isotherms of 2.

Iodine sorption/release study

	/s	S		
S-	S	S	₹C	S

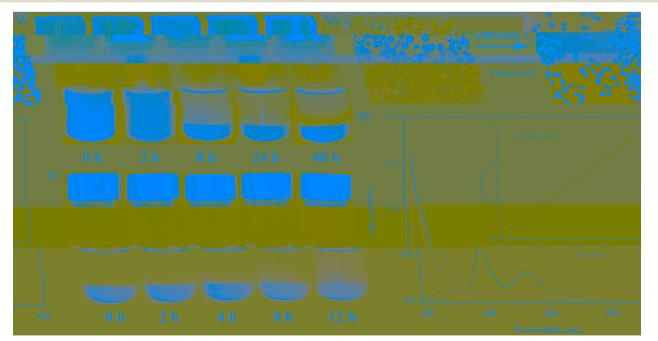


Fig. 6 a) and c) Pictures of different time intervals for the I_2 adsorption/release process in 10 mL of cyclohexane and CH₃OH, respectively. b) Photographs showing the color change of 2 before and after I_2 adsorption. d) I_2 release from $I_2@2$ in CH₃OH at different time intervals. Inset: the release rate of $I_2@2$ in the first 40 min.

- CrystEngComm, 2018, 20, 738.

 18
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 2010, 132, 10967.
- 19. 📢, . F , . ć 🙀 . 📲 . L, Inorg. Chem., 2017, 56, 4609.
- 20 . , F. , . . 🛃 B , J. Am. Chem. Soc., 2012, 134, 17881.
- 21 . . D s _{(i}, A. , . . B s 🛒 , Inorg. Chem., 2015, 54, 1337.
- 22 . $\mathbf{A}^{\mathbf{B}}$, $\mathbf{A}^{\mathbf{L}}$, $\mathbf{A}^{\mathbf{L}}$, . \mathbf{L} , . . \mathbf{L} , . . \mathbf{L} , . . $\mathbf{A}^{\mathbf{L}}$, . . F , Cryst. Growth Des., 2007, 7, 2066.
- , Inorg. Chem., 2007, 55, 8257.
- 24 . L. L. , L. B. , . , D.- . L, D. . , . 🎻 L, I. L , Cryst. Growth Des., 2015, 15, 4901.
- 25 (a) . . .
- 26 C. 🛫 🧃 , . . , . , . . 10 Langmuir, 2009, 25, 1795.
- 27 D. F. , . A. , . . C , . . C s, . A. s , . . C . . , *J. Am. Chem.* Soc., 2011, 133, 12398.
- т. т . , J. Am. Chem. Soc., 2017, **132**, 2561.
- 29 D. F. , . . C , . A. , . A. s,..C, 🛫 ,..C s .. , Chem. Mater., 2013, **25**, 2591.
- 30 **f** . , . D. , .- . C , .- **f** , . L, .- . , **L** . B , . . .- . , *Chem. Commun.*, 2019, 55, 1120.
- 31 E.B , . 🧃 , A. ss , D. . s I. C , Cryst. Growth Des., 2018, **18**, 7207.
- . . , . . L, . . C , L , . 🎻 L . L L , 32 Inorg. Chem. Front., 2019, 6, 1261.

- 17
 .-. L
 .-. L
 ... J
 ... L
 ..
 - .,.D.,B.L,.s,.¢L,..¢ 34 . L. L., J. Mater. Chem. A, 2016, 4, 15081.
 - 35 . . , . . L, L , L F. , . , D.- . L, . 🐗 L, L . L. L., Cryst. Growth Des., 2018, 18, 5449.
 - 36 . . E s , . 🚅 , L s, A. C , . , В. , 🛛 📲 , J. Am. Chem. Soc., 2014, 136, 5072.
 - 37 . . Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112.
 - 38 (a) A. L. . _•Acta Crystallogr., Sect. A: Found. Crystallogr., 2003, 36, 7; (b) . . D. s A. I. Acta Crystallogr., Sect. A: Found. Crystallogr., 1990, 46, 194.
 - 39 .- . , D. , . , .-D. **4** , .-**4** L , Dalton Trans., 2017, 46, 13952.
 - 12869; (c) **L** s, **L** . , **D** s , .
 - s,.,.,.,.,.,.,.,., . , . E. B , A. L S B , Chem. Commun., 2019, 55, 5013; (d) 🛫 🛫, . . , F. L , . . C , . L D , L 🌌 , . L . , Chem. Commun., 2019, **55**,
 - 6495. 41 . . , . L . . B , Cryst. Growth Des., 2011, 11, 1411.
 - 42 .-. , . , B. , F. , . . F . 🥑 B , Angew. Chem., 2011, 123, 8184.
 - 43 .- . , C.- . , .-C. , .-A. L .-B. D , Chem. Commun., 2016, 52, 12702.
 - 44 .-. , .C , .-. , F.-. ·- · , Inorg. Chem., 2016, 55, 9270.
 - , J. Am. Chem. Soc., 45 . , .- . 2012, 134, 4857.